An algebraic characterisation for Finsler metrics of constant flag curvature

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finsler Manifolds with Nonpositive Flag Curvature and Constant S-curvature

The flag curvature is a natural extension of the sectional curvature in Riemannian geometry, and the S-curvature is a non-Riemannian quantity which vanishes for Riemannian metrics. There are (incomplete) nonRiemannian Finsler metrics on an open subset in Rn with negative flag curvature and constant S-curvature. In this paper, we are going to show a global rigidity theorem that every Finsler met...

متن کامل

Projectively Flat Finsler Metrics of Constant Curvature

It is the Hilbert’s Fourth Problem to characterize the (not-necessarilyreversible) distance functions on a bounded convex domain in R such that straight lines are shortest paths. Distance functions induced by a Finsler metric are regarded as smooth ones. Finsler metrics with straight geodesics said to be projective. It is known that the flag curvature of any projective Finsler metric is a scala...

متن کامل

Geodesic behavior for Finsler metrics of constant positive flag curvature on S

We study non-reversible Finsler metrics with constant flag curvature 1 on S and show that the geodesic flow of every such metric is conjugate to that of one of Katok’s examples, which form a 1-parameter family. In particular, the length of the shortest closed geodesic is a complete invariant of the geodesic flow. We also show, in any dimension, that the geodesic flow of a Finsler metrics with c...

متن کامل

Two-Dimensional Finsler Metrics with Constant Curvature

We construct infinitely many two-dimensional Finsler metrics on S 2 and D 2 with non-zero constant flag curvature. They are all not locally projectively flat.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry

سال: 2020

ISSN: 0138-4821,2191-0383

DOI: 10.1007/s13366-020-00511-w